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This is the second of two companion papers which collectively present a method
for the analysis of complex structures built-up from sti! beams and #exible plates.
The method separates the sti! parts of the structure (which support the vibration
sources) and the #exible parts of the structure, models the two parts separately in
order to accommodate the signi"cantly di!erent wavelengths of the waves in them,
then recombines the two parts to obtain the response of the complete structure.
The companion paper analyzed the plate-sti!ened beam consisting of a directly
driven uniform beam attached to a rectangular plate in order to demonstrate the
theoretical foundation of the method. However, the theoretical work is limited
to very simple geometries. Hence, this paper implements the method using a
combination of numerical analysis to model the sti! beam and analytical
impedances to model the #exible plate. In particular, the response of the beam
separate from the plate is modelled using "nite element analysis. The response
of the plate separate from the beam is modelled using analytical impedances
in a manner identical to that used in the companion paper. The two separate
responses are "nally coupled together using a standard sub-structuring procedure.
Predictions of input and transfer response for two geometrically di!erent
plate-sti!ened beams, one with a rectangular plate and one with a trapezoidal
plate, compare well with measurements. Additionally, the method allows
estimation of the mean-square acceleration of the plates which also compare
favourably with measurements ( 2000 Academic Press
1. INTRODUCTION

The companion paper [1] showed that in the plate-sti!ened beam of Figure 1, the
di!erence in the wavelengths of the long waves in the sti! beam and the short waves
in the #exible plate is quite large. In fact, it was demonstrated formally that
provided the long waves have at least twice the wavelength of the short waves,
the plate presents a locally reacting impedance to the beam. This means that the
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Figure 1. The experimental plate-sti!ened beam. The force acts at one end of the beam as shown.
The beam is 68 mm high excluding the thickness of the plate. Both beam and plate are 5)9 mm thick.
The material properties are given in Table 1.
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response of the plate depends almost entirely on waves which radiate into the
plate normal to the axis of the beam. In practice, this means that the continuous
plate shown in Figure 1 can be replaced physically with a large number of narrow
parallel-sided strips of plate without signi"cantly altering the response of the entire
structure. Using this "nding, a general theoretical method for the analysis of
built-up structures was proposed in reference [1]. The theoretical method utilizes
the large di!erence in the wavelengths of the long and short waves to separate the
complete structure into separate spine and receiver components, the former which
carries long waves and the later which carries much shorter waves. The response of
the complete structure is then predicted in three steps. First, the response of the
spine separate from the receiver is established; second, the locally reacting
impedence of the receiver is determined; third, the separate spine and receiver
responses are combined to yield the response of the complete structure.

Applying this theoretical method to the plate-sti!ened beam, the dispersion
relation for a wave with wavenumber k

b
and frequency u in the beam when

uncoupled from the plate is [2]
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are the complex sti!ness and mass per unit length respectively

(Appendix A contains a list of symbols). In reference [1] it was shown that the plate
in Figure 1 presents a locally reacting impedance per unit length along the beam
given by
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where mA
p
is the plate mass per unit area, k

y
is the wavenumber for the waves which

radiate into the plate normal to the beam axis and ¸
y

is the width of the plate
normal to the beam. Equation (2) is the impedance of a strip of plate of unit width
and length ¸

y
driven at its midpoint and is essentially a function of only two

parameters, namely k
y
and ¸

y
. It was termed the receiver impedance in reference [1].

Finally, it was shown in reference [1] that the dispersion relation for the beam
coupled to the locally reacting plate is given by
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u2!juZI R{, (3)

where k
psb

is the wavenumber in the beam when coupled to the plate. Equation (3) is
recognizable as a combination of equations (1) and (2). In reference [1], equation (3)
was used to predict the input and transfer frequency response functions of two
slightly di!erent plate-sti!ened beams. The predictions compared favourably with
laboratory measurements, thereby supporting both the theoretical method and the
underlying physical argument.

1.1. EXTENDING THE METHOD TO MORE COMPLEX BUILT-UP STRUCTURES

Despite successfully predicting the response of the plate-sti!ened beam of
Figure 1, the analytical approach adopted in reference [1] is limited to
geometrically simple structures such as a uniform beam attached to a rectangular
plate. It is impractical, for example, when applied to the structure shown in Figure
2 (in which the plate has a trapezoidal area) because the impedance of the plate
varies along the beam. However, provided the receiver presents a locally reacting
impedance to the spine, it can still be replaced physically by a number of narrow
parallel-sided strips of plate which collectively can form any required geometry.
For example, Figure 3 shows the rectangular plate-sti!ened beam partitioned into
two components. One component represents the beam; the other represents the
rectangular plate with a number of narrow plate-strips. As in reference [1], the
response of the structure is determined by applying the three steps of the theoretical
method as follows. First, the response of the spine is calculated in isolation of the
receiver. In principle, any method which predicts the spine response is viable.
However, given that the spine carries long waves having a wavelength comparable
with its overall length, a "nite element model of the spine is appealing. Second, the
receiver is modelled as a number of plate strips using equation (2). Third, the
responses of the spine and receiver are combined to yield the response of the
complete structure. Such a procedure, combining numerical ("nite element) and
analytical analyses, will be termed the hybrid method in this paper.

The companion paper formally determined the conditions which need to
be ful"lled in order to apply the theoretical method, as well as identifying
the parameters needed to model the receiver impedance. This paper completes
the work by addressing the following objectives: (a) determination of the
parameters needed to model the response of the spine; and (b) determination of
the parameters required when the separate responses of the receivers and spine
are combined.



Figure 2. The trapezoidal plate-sti!ened beam. The beam is 68 mm high excluding the thickness of
the plate. Both beam and plate are 5)9 mm thick. The material properties are given in Table 1.

Figure 3. The plate-sti!ened beam split into a beam attached to a set of independent narrow strips
of plate (the receivers).
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The hybrid method is applied to both the rectangular and trapezoidal
plate-sti!ened beams. Predictions of the input and transfer frequency response
functions on the spine beam are compared with laboratory measurements. In
passing, it is shown how the hybrid method facilitates straightforward prediction of



Figure 4. Two structures which are to be joined at a number of points &&N''.
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the mean-square vibration of the plate which is compared with measurements. The
mean-square response of the plate could be used to predict sound radiation.

2. THE HYBRID METHOD

The hybrid method uses a standard sub-structuring procedure (e.g. reference [3])
to couple the spine and receivers. The procedure is recapitulated below.

Figure 4 shows two continuous structural components S and R. In the present
context S is the spine and R is the receiver. Both structures have, in general, an
in"nite number of degrees of freedom. It is required to couple the structures at
a "nite number of points N.

If the spine is analyzed on its own, one can compute the frequency response
function between any two of the chosen degrees of freedom. By determining all the
input and transfer frequency response functions between these degrees of freedom,
a mobility matrix Y3 S can be assembled. The process can be repeated on the receiver
to produce its mobility matrix Y3 R.

To couple the two components, both mobility matrices are inverted to produce
impedance matrice.

Z3 S"Y3 S~1, Z3 R"Y3 R~1. (4)

Using the compatibility of the velocities at their interconnecting points, the coupled
impedance matrix is simply

Z3 C"Z3 S#Z3 R. (5)

The coupled mobility matrix is found after another inversion

Y3 C"Z3 C~1. (6)

In the past, the inversion of large matrices has been avoided because the amount of
computation required was too expensive and the inversion could become unstable



856 R. M. GRICE AND R. J. PINNINGTON
if insu$cient accuracy was available during the calculations [4]. Modern
high-speed digital computers have ameliorated the "rst di$culty but not the
second. The direct computation of a matrix inverse is usually avoided because it
requires the matrix determinant. Instead, factorization algorithms which do not
compute the determinant are deployed [5].

The numerical accuracy of inversion of a square matrix A can be estimated using
the condition number

cond(A)"EAE EA~1E, (7)

where E2E indicates the norm of the matrix. It can be shown [4] that the inversion
is stable provided

cond(A)@(nr)~1, (8)

where n is the precision of the #oating point numbers stored by the computer
and r is the unit round-o! [4]. Using a 486 personal computer, the matrix
inversion could be considered stable if the condition numbers remained
below 1014.

The condition number on its own does not guarantee accuracy. Thus, the
calculations in the hybrid method which lead to the coupled mobility matrix in
equation (6) included the following checks.

(i) The condition numbers for both the spine mobility matrix and the coupled
impedance matrix are calculated prior to inversion and checked against
equation (8).

(ii) The condition number of both matrices should fall with increasing
frequency, indicating increasing numerical stability. This is because
damping causes the magnitudes of the o!-diagonal transfer responses to
fall below those of the input responses on the leading diagonal, and this
di!erence increases with frequency.

(iii) For a structure excited by a vector of harmonic forces F3 the time-averaged
power PM injected into it is

PM "1
2
ReMF3 *T Y3 C F3 N. (9)

For a damped structure, equation (9) must be positive.

3. APPLICATION OF THE HYBRID METHOD TO THE
PLATE-STIFFENED BEAM

Figure 3 represented the rectangular plate-sti!ened beam as a spine attached to
a number of independent plate strips (the receivers). The number and width of the
receivers are parameters which will be quanti"ed below. The following sections
detail the "nite element analysis of the beam, the use of the receiver impedance of
equation (2), the process of coupling the two separate responses to obtain the
response of the structure, and lastly the calculation of the mean-square response of
the receivers.
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3.1. FINITE ELEMENT ANALYSIS OF THE SPINE BEAM

The "rst step in the hybrid method is the calculation of the spine mobility
matrix YS. This involves the selection of a suitable "nite element, determination
of the element dimensions, de"nition of the points to which receivers will be
attached, construction of the mesh and computation of the frequency response
functions.

In Figure 1, the beam neutral axis can be expected to lie in the mid-plane of the
plate because the plate is very sti! in-plane. Therefore, to accomodate this o!set
neutral axis, an 8-noded quadrilateral plate element was selected to model the
beam. These elements would model the #exible motion via in-plane bending [6]. In
general, the accuracy of "nite element analysis increases as the element size
decreases. Petyt [6] suggests that a minimum of four quadratic elements are needed
per wavelength to obtain natural frequency predictions with an accuracy better
than 1%. To ensure that the "nite element model of the beam was at least this
accurate, the element length was set at 0)08 m such that there would be at least six
elements per wavelength at the maximum frequency. The elemental height was
0)0739 m which included the thickness of the plate.

Figure 5 shows the "nite element model of the beam. This material properties are
shown in Table 1. To simulate the experimental conditions which will be presented
in section 5 more exactly, a unit harmonic force fI

1
was applied at the upper edge of

the beam. In order to locate the neutral axis of the beam close to that in the real
structure, constraints were applied to prevent axial deformation along its lower
edge. This places the neutral axis at the lower edge of the beam in Figure 1 which
produces an increase in the beam sti!ness compared to that used in reference [1].
Additional boundary conditions were applied to ensure that the beam could only
translate and rotate in the x}y plane (h

x
"0, h

y
"0 at all nodes) to replicate the

experimental conditions in reference [1]. The "nal mesh had 25 elements and 333
unconstrained degrees of freedom. The overall input and transfer responses of the
structure were required at the ends of the beam as shown by the velocities vJ

1
, vJ

2
in

Figure 5.

3.2. RECEIVER IMPEDANCE

The theory in section 2 used the mobility of both the spine and the receiver
components in order to calculate the coupled mobility matrix of the complete
structure. However, in the present case it is not necessary to form the receiver
mobility matrix and then invert it because the impedances can be found directly.
Figure 3 shows a number of points &&d'' to which receivers are connected. With this
arrangement, there are as many receivers as "nite elements. The impedance of each
receiver is determined by multiplying the impedance per unit width of equation (2)
by the receiver width which in this case matches the element length along the beam.
Thus, the receiver impedance is

ZI R"ZI R{¸
e A

N
msB . (10)



Figure 5. The "nite element mesh of the beam. Each element has a length of 0)08 m in the
x-direction and 0)0739 m in the y-direction. Boundary conditions: u

x
"0 along lower edge,

h
x
"h

y
"0 at all nodes.

TABLE 1

Material properties for the plate-sti+ened beams

Young's modulus Poisson's ratio Loss factor Density
(GN/m2) (!) (!) (kg/m3)

4)4 0)38 0)05 1152
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where ¸
e
"0)08 m is the element length along the beam. The receiver length ¸

y
in

equation (2) is 0)9 m which equals the width of the plate normal to the beam. For
the trapezoidal plate-sti!ened beam of Figure 2, the plate can be represented
approximately using receivers of varying lengths as shown in Figure 6.

3.3. CALCULATION OF THE COUPLED RESPONSE

Since there are 25 receivers to be coupled to the spine and two additional points
on the ends of the spine at which velocities are to be computed, 27 frequency



Figure 6. Plan of the trapezoidal plate-sti!ened beam (structure &&C'') showing the idealisation of
the plate as a set of varying-length receivers.
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response functions (one input and 26 transfer) must be calculated for each position
of the excitation force along the beam. The full spine mobility matrix is found by
calculating 27 frequency response functions for each of the 27 positions along the
beam.

The frequency response functions were calculated by direct solution of the
equations of motion in the frequency domain rather than by modal superposition
[6]. This method takes longer than model superposition but was done for
simplicity. The ANSYS "nite element program was used to perform the
calculations [7]. However, because the mesh has so few degrees of freedom, the
forced response is still quite e$cient. Using 250 frequencies between 10 Hz and
1 kHz required 4)7 h computation using a 300 MHz personal computer. This
resulted in 272"729 frequency response functions.

The coupling of the "nite element response of the spine to the 25 receiver
impedances was carried out using MATLAB [8]. The time taken to compute the
coupled response together with the associated stability calculations was only 30 s.
These timings highlight that, once the relatively time-consuming "nite element
analysis is complete, the hybrid method allows rapid prototyping of the spine
response using various plate geometries.

3.4. PREDICTION OF THE MEAN-SQUARE RESPONSE OF THE PLATE

As part of the sub-structuring procedure, the hybrid method calculates
the coupled velocities at the joint between the spine and the receivers. Using
the receiver impedances of equation (10), the power input to the receivers
can be determined. This can be used to estimate the mean-square response of
the receivers.

For each receiver, the time-averaged power PM
R

injected into it by the spine beam
vibrating with velocity vJ

S
is calculated using [2]

PM
R
"1

2
DvJ

S
D2 ReMZI RN"g

R
uEM

R
, (11)



Figure 7. Sketch of the plate-sti!ened beam (structure &&B'') with the edges clamped between
76]52]10 kg/m mild steel channels [9] using large G-cramps (not shown) on each side.
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where EM
R

is the time-averaged energy density of the receiver and g
R

is its loss factor.
This is related to its spatially averaged mean square velocity EvJ

R
D2D by

EM
R
"mA

R
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y
¸

e
Ev8

R
D2D, (12)

where mA
R

is the plate mass per unit area. In section 4, laboratory measurements on
two plate-sti!ened beams will be presented. Because these measurements are made
using piezoelectric accelerometers, it is more convenient to work with acceleration
in which case the spatially averaged mean-square acceleration ExK

R
D2D is

ExK
R
D2D "

uPM
R

g
R
mA

R
¸

y
¸
e

. (13)

4. MEASUREMENTS

Two slightly di!erent perspex plate-sti!ened beams similar to Figure 1 were
examined in reference [1] but for brevity, only one of these structures (called
structure &&B'' in reference [1]) will be considered here. Figure 7 shows a sketch of
structure &&B'' in which the plate is clamped at its edges between large steel channels
[9]. Jointing compound [10] was used between the plate and the channels to
increase the sti!ness in the clamped joint. To illustrate the versatility of the hybrid
method, structure &&B'' is augmented with the trapezoidal plate-sti!ened beam of
Figure 2 (henceforth called structure &&C''). To obtain the trapezoidal shape, the
channels were simply rotated inward. The material properties of the perspex are
shown in Table 1.



Figure 8. Plan of the plate-sti!ened beam structure &&B'' showing the lines } ) } ) } along which the
acceleration was measured.
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4.1. MEASUREMENTS OF INPUT AND TRANSFER RESPONSE

To measure the input and transfer responses of the plate-sti!ened beams,
the structures were excited using an impulse hammer as described in full in
reference [1].

4.2. MEASUREMENT OF THE MEAN-SQUARE RESPONSE OF THE PLATE

Since the receivers shown in Figures 3 and 6 represent the continuous plate as
a set of independent receivers, the mean-square response of the plate can be
estimated by measuring the plate response along lines which correspond to the
receiver centrelines. Thus, measurements of the response of the plate were made at
10 randomly selected points along lines associated with three receivers as shown in
Figure 8 for structure &&B''. For each measurement position, the beam was excited
by the impulse hammer and an accelerometer measured the resulting acceleration.
Ten averages were acquired for each position on the plate and the mean-square
acceleration spatially averaged across all 10 positions. Table 2 shows the distances
along these lines from the mid-line of the beam at which the response was measured
on structure &&B''. Table 3 shows the position on the receivers indicated in Figure
6 at which the acceleration was measured on structure &&C''.

The spatially averaged mean-square acceleration determined in this manner is of
course only an estimate of the true mean so con"dence limits associated with
a certain statistical distribution need to be determined. The number of measure-
ment points in#uences the type of distribution. For sample sizes of less than 30, it is
safest to assume a t-distribution since this has a wider spread than the Gaussian
distribution [11]. The 90% con"dence interval for the mean-square acceleration
with 10 measurements is found from

ExK
R
D2D "k$0)55s, s"p(p!1), (14)

where k is the true mean and s is the sample estimate of the true standard deviation
for p-samples.



TABLE 2

¹he distances from the mid-line of the beam at which the acceleration of the plate
shown in Figure 8 was measured

Measurement Distance D
y

from Measurement Distance D
y

from
number mid-line of beam (m) number mid-line of beam (m)

1 0)039 6 0)237
2 0)103 7 0)283
3 0)143 8 0)303
4 0)176 9 0)353
5 0)209 10 0)385

TABLE 3

¹he distances from the mid-line of the beam at which the acceleration of the plate
corresponding to the receivers nearest the middle and at the undriven end of the

trapezoidal plate-sti+ened beam was measured

Strip 1 Strip 13 Strip 25

Measurement Distance D
y

from Measurement Distance D
y

from
number mid-line of beam number mid-line of beam

(m) (m)

1 0)039 1 0)039
2 0)073 2 0)063
3 0)103 3 0)085

As in 4 0)123 4 0)103
Table 2 5 0)143 5 0)123

6 0)176 6 0)143
7 0)209 7 0)155
8 0)237 8 0)176
9 0)283 9 0)193

10 0)303 10 0)209
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5. DISCUSSION OF RESULTS

5.1. FINITE ELEMENT ANALYSIS OF THE BEAM ON ITS OWN

Before coupling the frequency response functions of the spine beam (as calculated
by the "nite element analysis) to the recceiver impedances, it is prudent to check
the frequency response functions themselves. The input mobility of a free}free
Euler}Bernoulli beam of length ¸

b
driven at one end is

>I
1
"

k
b

m@
b
uA

1!aJ
b

1#aJ
b

!jB , aJ
b
"e~+2k3 bLb. (15)



Figure 9. Predicted input accelerance of the "nite beam: ** , "nite element analysis; } } } ,
equation (14).
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The transfer mobility to the undriven end of the beam is similarly

>I
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"

k
b

m@
b
uA

!j2JaJ
b

1#aJ
b
B . (16)

These mobilities are inaccurate at low frequencies below k
b
¸

b
(4)6 (15 Hz for the

present structure) because below this limit the near"eld wave exceeds 1% of its
amplitude at the opposite end of the beam.

Figure 9 compares the input accelerance calculated by the "nite element analysis
with the accelerance obtained from equation (15). The following observations are
made.

(a) The resonance frequencies of the two predictions di!er because the "nite
element model allows for shear distortion [2] which is ignored in equation (15).

(b) The low-frequency error in equation (15) is visible compared to the "nite
element prediction, the latter which correctly predicts a mass-like response.

These observations apply also to Figure 10 which compares the "nite element
transfer accelerance with the response based on equation (16). Overall, the
two results indicate that the "nite element analysis has yielded acceptable
predictions.



Figure 10. Predicted transfer accelerance of the "nite beam: ** , "nite element analysis; } } } ,
equation (15).
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5.2. RECEIVER IMPEDANCES

Figure 11 shows the receiver impedances for the two plate-sti!ened beams.
Figure 11(a) shows the impedance used for all 25 receivers forming the rectangular
plate. Figure 11(b) shows the 25 di!erent impedances for the trapezoidal plate. The
amplitudes are rather poorly resolved below 100 Hz due to the coarse 4 Hz
frequency increment employed in the "nite element analysis.

5.3. HYBRID METHOD RESULTS FOR STRUCTURE &&B''

This section and the one following present the frequency response functions
calculated using the hybrid method for the two plate-sti!ened beams.

5.3.1. Condition numbers for the matrix inversion and power injected into the
structure

Figure 12 shows the condition numbers for the beam mobility matrix and the
coupled impedance matrix. The following observations are made:

(i) The condition numbers of the spine beam mobility matrix are generally
greater than those of the coupled impedance matrix, indicating that the
latter is better conditioned. This is expected because the coupled impedance
matrix includes the receiver impedances on its leading diagonal.



Figure 11. The receiver impedances used to model the rectangular and trapezoidal plates. (a)
Rectangular plate; (b) Trapezoidal plate.

Figure 12. Condition numbers of the matrices for structure &&B'':** , free mobility matrix of the
spine beam; } ) } ) } , coupled impedance matrix of the entire structure.
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(ii) The general trend is for the condition numbers to fall as the frequency
increases, apart from the e!ects of the beam resonances such as at 75
and 200 Hz (see Figure 9). At these resonances, the magnitudes of the
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input mobilities on the leading diagonal are similar to the o!-diagonal
transfer mobilities so the matrix condition is poorer than away from
resonance.

(iii) The condition numbers do not exceed 106 indicating a loss of accuracy of
about six decimal places and are well below the limit of equation (8).

Figure 13 shows the total power injected into the coupled structure multiplied
by frequency (this makes it comparable with the imaginary part of the input
Figure 13. u]power injected into the plate-sti!ened beam structure &&B'' calculated by the hybrid
method.

Figure 14. Input accelerance of the plate-sti!ened beam structure &&B'':** , measurement; } ) } ) } ,
hybrid method prediction.
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accelerance) calculated by the hybrid method. All the power is positive and the data
show a consistent trend. These results suggest that the hybrid method is adequately
stable for the inversion of a matrix of order 27 and that the coupled responses of the
structure should be admissible.

5.3.2. Input accelerance

Figure 14 compares the input accelerance calculated by the hybrid method with
the measurement. The following observations are made.

(i) There are di!erences between the frequencies of the peaks and troughs of the
two modulus curves and their overall levels. These are thought to be caused
by the di!erence in the position of the beam neutral axis in the "nite element
analysis and the test structure

(ii) The frequency average value of the predicted phase drifts toward 903 at high
frequencies.

Overall this prediction re#ects the measurement except for the drift in the phase
curve. This error is investigated more fully in reference [12] where it is shown that it
is a function of the width of the receivers which are coupled to the beam. The phase
error is believed to arise because the receivers &&block'' the motion of the "nite
elements slightly at higher frequencies, rather than modelling the continuous
Figure 15. Transfer accelerance of the plate-sti!ened beam structure &&B'': ** , measurement;
} )} ) } , hybrid method prediction.
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coupling along the joint between the beam and plate. Therefore, a su$cient number
of receivers is required to model the coupling properly. The present results and
those in reference [12] suggest that one receiver per element (as shown in Figure 3)
is the minimum which should be used. More receivers with a smaller width could be
used but of course this would increase the order of the matrices and hence the
calculation time.

5.3.3. ¹ransfer accelerance

Figure 15 compares the predicted transfer response with the measurement.
In general, these agree well except in a number of narrow frequency bands such
Figure 16. Mean-square acceleration for the rectangular plate of structure &&B'':** , measurement;
} )} ) } , hybrid method prediction. (a) receiver at drive-point; (b) receiver at mid-length; (c) receiver at
undriven end.
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as at 200 and 400 Hz. These frequencies correspond to the peaks in the
receiver impedance shown in Figure 11(a). At these frequencies the receiver is
anti-resonant and therefore presents a large impedance to the entire spine,
e!ectively blocking the transmission of waves along the beam. Thus, the
rectangular plate creates a set of narrow-band vibration neutralizers as observed in
references [1].

The prediction exhibits much lower vibration levels in the narrow bands of
high attenuation than measured. This may be related to variations in both
the width of the plate normal to the beam and the thickness of the plate noted
Figure 17. 90% con"dence interval for the measured mean-square acceleration of the plate of
structure &&B'': ** , predicted mean-square acceleration; } ) } ) } , 90% con"dence limits for the
measured mean. (a) receiver at drive-point; (b) receiver at mid-length; (c) receiver at undriven end.
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in the structure description in reference [1]. Together, these variations are
believed to prevent the plate having the precise anti-resonant impedance of
equation (2) which is required to obtain maximum attenuation of the spine
waves.

5.3.4. Mean-square acceleration of the plate

Figure 16 shows the predicted and measured mean-square acceleration for
the positions on the plate shown in Figure 8. The following observations are
made.

(i) The measurement taken along the line nearest the drive-point is in reason-
able agreement with the prediction but shows the same frequency shift seen in
the input accelerance of Figure 14.

(ii) The results at the mid- and full-length positions are in excellent agreement
except below 100 Hz and in the narrow bands of high attenuation. The
former error is expected to be due to the compliance of the jointing
compound, while the latter error is believed to be due to the variation in plate
width and thickness as mentioned above.

Figure 17 shows the 90% con"dence interval for the measured mean. With the
exception of the low-frequency region and within the narrow bands of high
Figure 18. Input accelerance of the trapezoidal plate-sti!ened beam structure &&C'':** , measure-
ment; } ) } ) } , hybrid method prediction.



Figure 19. Transfer accelerance of the trapezoidal plate sti!ened beam structure &&C'': ** ,
measurement; } ) } ) } , hybrid method prediction.

BUILT-UP STRUCTURES, PART II 871
attenuation, the con"dence interval generally encompasses the prediction which is
therefore considered satisfactory.

5.4. HYBRID METHOD RESULTS FOR STRUCTURE &&C''

5.4.1. Input and transfer accelerance

Figure 18 compares the predicted and measured input accelerances. Below
100 Hz, the peaks and troughs di!er, probably because of the "nite sti!ness of the
jointing compound used between the plate and the channels. Above 100 Hz the two
curves are in excellent agreement.

Figure 19 presents the transfer accelerance and this agrees well with the
measurement. In comparison with the transfer accelerance for the beam on its
own shown in Figure 10, Figure 19 shows that the response at the end of the beam
has been strongly reduced across the whole frequency range rather than in just
narrow-frequency bands seen in Figure 15 (the vertical scale of all these "gures is
identical). The trapezoidal plate therefore acts as a wideband vibration
neutraliser. Moreover, the method of modelling the plate as a set of independent
plate strips reveals that, despite its trapezoidal shape, the plate remains locally
reacting.



Figure 20. Mean-square acceleration for the plate of the trapezoidal plate-sti!ened beam structure
&&C'': ** , measurement; } ) } ) } , hybrid method prediction.
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5.4.2. Mean-square acceleration of the plate

Figure 20 compares the predicted and measured mean-square acceleration of the
three receivers shown in Figure 6. All three predictions are in good agreement with
the measurements except at low frequencies due to the "nite sti!ness of the jointing
compound. Figure 21 shows the 90% con"dence interval for the measured mean
which supports the predicted values.

6. CONCLUDING REMARKS

A hybrid method has been used to analyze the response of a plate-sti!ened beam
which consists of a single directly driven sti! beam (the spine) connected to a large



Figure 21. 90% con"dence interval for the measured mean-square acceleration of the plate of the
trapezoidal plate-sti!ened beam structure &&C'':** , predicted mean-square acceleration; } ) } ) } , 90%
con"dence limits for the measured mean.
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#exible plate. The plate has been idealized as a set of narrow parallel-sided strips of
plate (the receivers). The response of the spine separate from the receivers has been
modelled "nite element analysis. The response of the receivers separate from the
spine has been modelled using analytical impedances. The two separate responses
have been coupled together using a standard sub-structuring procedure. It has been
shown that the following parameters must be de"ned in order to apply the hybrid
method.

(i) The size of the element used to construct the "nite element mesh of the spine
must be su$ciently small such that the spine is modelled accurately.
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(ii) To simulate the continuous coupling at the joint between the beam and
plate, a su$cient number of receivers is required. It is suggested that the
width of the receivers should be no greater than the elemental length.

(iii) The condition numbers for the matrix inversion undertaken during the
sub-structuring procedure must be small enough that the calculations can be
considered acceptable.

The hybrid method has been used to calculate the response of two di!erent
plate-sti!ened beams. In both cases, predictions of input and transfer response on
the spine beam have compared well with measurements. Additionally, the method
has allowed estimation of the mean-square acceleration of the receiver plate which
has also compared favourably with measurements. The predicted mean-square
response of the plate could be used to predict sound radiation.
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APPENDIX A: LIST OF SYMBOLS

f Circular frequency (Hz)
j J!1
k wavenumber (m~1)
m@

b
mass per unit length (kg/m)

mA
p

mass per unit area of a plate (kg/m2)
p number of samples from a population (!)
n number of bits used to store a #oating point number in a computer
r unit round-o! error in storing a decimal number in binary form
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s sample estimate of standard deviation
v velocity (m/s)
xK acceleration (m/s2)
x, y, z co-ordinates
D beam sti!ness (N m2); plate sti!ness (N m)
EM time-averaged energy (Nm)
¸ length (m)
PM time-averaged power (N m/s)
A square matrix
F force vector (N)
> structural mobility (m/s N)
Z structural impedance (N s/m)
Z@ structural impedance per unit length (N s/m2)
aJ , bI travelling wave attenuation coe$cients (!)
g structural loss factor (!)
p standard deviation
k mean value
u radiation frequency (rad/s)
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